Электромагнитные волны и их свойства

Электромагнитные волны и их свойства

Тестирование онлайн

Электромагнитное поле

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.

Источник электромагнитного поля — электрические заряды, движущиеся с ускорением.

Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур "открывают", т.е. создают условия для того, чтобы поле "уходило" в пространство. Это устройство называется открытым колебательным контуром — антенной.

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.

Электромагнитные волны представляют собой переменные электромагнитные поля, состоящие из двух неразрывно связанных и взаимно обусловленных составляющих — переменного электрического и магнитного полей. Возбуждение в некоторой области пространства переменного электрического поля приводит к возникновению в смежных областях пространства переменного магнитного поля, которое в свою очередь возбуждает переменное электрическое поле и т. д. Непременным условием существования электромагнитных волн является их распространение, которое в вакууме происходит со скоростью света, а в других средах — со скоростью, определяемой электрическими свойствами этих сред.

Свойства электромагнитных волн

Одной из важнейших характеристик электромагнитных волн, определяющих их специфические особенности, является частота электромагнитных колебаний и связанная с ней длина волны. Электромагнитные волны охватывают широкий спектр колебаний различных частот.

Широкую область электромагнитных колебаний занимают радиоволны. К радиоволнам относят колебания с частотами от 10 МГц до

300 ГГц, что соответствует длинам волн от 30 км до 1 мм.
Радиоволны возбуждаются при помощи электрических цепей, питаемых переменными токами соответствующей частоты. Применительно к особенностям их распространения в земных условиях радиоволны различают по следующим диапазонам (табл. 1).

Название диапазона Длина волны, м Частота, МГц
Сверхдлинные волны (СДВ) 100 000-10000 0.003 — 0.03
Длинные волны (ДВ) 10 000-1000 0.03 — 0.3
Средние волны (СВ) 1000-100 0.3 — 3
Короткие волны (КВ) 100-10 3 — 30
Ультракороткие волны (УКВ):
метровые 10-1 30 — 300
дециметровые 1 — 0.1 300 — 3000
сантиметровые 0.1-0,01 3000 — 30000
миллиметровые 0,01-0,001 30000-300000
Читайте также:  Срок действия прививки от гепатита в

К радиоволнам примыкают волны инфракрасного излучения с длиной волны до 0,77 мкм (частота до 4 x10 5 ГГц). Источниками этих волн служат слабонагретые тела, а также оптические квантовые генераторы. Инфракрасные лучи обнаруживаются по их тепловому действию.

За инфракрасным излучением следует видимое световое, которому соответствуют длины волн от 0,77 до 0,38 мкм (частота до 8 x10 5 ГГц). Источниками световых волн являются атомы и молекулы различных тел, излучающие эти волны под влиянием некоторых внешних воздействий (например, нагретые тела или газы, светящиеся под влиянием электрических разрядов). Мощным источником электромагнитных колебаний светового диапазона являются оптические квантовые генераторы (лазеры). Световое излучение обнаруживается глазом, а также по фотографическому, фотоэлектрическому и тепловому действиям.

Следующий диапазон электромагнитных колебаний занимают ультрафиолетовые лучи, длины волн которых лежат в пределах от 0,38 до 0,05 мкм (частота до 6×10 6 ГГц). Источниками их являются возбужденные атомы различных тел, испускающие лучи под влиянием некоторых внешних воздействий. Эти лучи обнаруживаются фотоэлектрическим и фотографическим методами.

За ультрафиолетовыми лучами лежит область рентгеновских и еще более коротких — гамма-лучей, испускаемых атомами и отдельными элементарными частицами вещества (электронами, протонами и др.) под влиянием различных воздействий. Все короткие волны, начиная со световых, способны ионизировать газы; этим их свойством пользуются для обнаружения наиболее коротких электромагнитных волн.

Законы распространения электромагнитной энергии тесно связаны с электрическими и магнитными свойствами среды, которые характеризуются диэлектрической проницаемостью ε, измеряемой в фарадах на метр (Ф/м), магнитной проницаемостью µ, измеряемой в генри на метр (Г/м), и удельной электрической проводимостью σ, измеряемой в сименсах на метр (См/м). Однородную среду, в которой электромагнитные волны не испытывают поглощения, отражения и рассеяния, называют свободным пространством или вакуумом. Реально такого пространства не существует, но свойства космического пространства близки к нему. Для свободного пространства σ = 0, так как в нем нет свободных электрических зарядов, обусловливающих электропроводность.

Одной из важнейших характеристик электромагнитных волн является скорость их распространения, которая в свободном пространстве одинакова для всех длин волн и является одной из фундаментальных постоянных физики. В реальной среде скорость распространения электромагнитных волн зависит как от свойств среды, так и от частоты электромагнитных колебаний. Если электромагнитные параметры среды зависят от частоты колебаний, то волны различных частот будут распространяться в такой среде с различной скоростью. Это явление называют дисперсией, а среды, обладающие дисперсией, получили название диспергирующих. Свободное пространство, как указывалось выше, является недиспергирующей средой. Атмосфера в нижней ее части (ниже ионосферы) для радиоволн представляет собой недиспергирующую среду и поэтому скорость их распространения в атмосфере не зависит от частоты. Для световых волн нижние слои атмосферы являются диспергирующей средой.

При взаимном перемещении источника электромагнитных колебаний и приемника энергии возникает эффект Доплера, заключающийся в изменении частоты принимаемых колебаний. При удалении источника колебаний частота уменьшается, а при приближении — возрастает. Эффект Доплера имеет важное значение в астрономии и применяется при определении положения искусственных космических объектов.

Распространение электромагнитных волн

Если бы Земля была идеальным проводником и ее поверхность представляла собой плоскость, а атмосфера, в которой распространяются электромагнитные волны, была идеальным диэлектриком, то распространение электромагнитных волн происходило бы без поглощения и потери энергии, так как идеальный проводник полностью отражает волну, а в идеальном диэлектрике отсутствует поглощение. В подобном случае волны распространялись бы прямолинейно и с постоянной скоростью; уменьшение напряженности поля происходило бы только за счет расширения сферического фронта волны.

В действительных условиях, а именно вблизи границы раздела двух различных неоднородных сред (атмосферы и Земли), распространение электромагнитных волн существенно отличается от указанного выше идеального случая. Неоднородность обеих сред по отношению к электромагнитным колебаниям состоит в различии и постоянной изменчивости в пространстве и во времени их электрических параметров: диэлектрической проницаемости и электрической проводимости. Магнитная проницаемость для сред, встречающихся при распространении электромагнитных воли в земных условиях, близка к единице и поэтому она почти не влияет на распространение волн.

Поверхность Земли имеет сложную форму и отличается чрезвычайным разнообразием физических свойств. Водные пространства, а также участки суши с различным рельефом и разнообразным растительным покровом, населенные пункты и искусственные сооружения характеризуются различными электрическими параметрами, по-разному влияющими на распространение электромагнитных волн. Электрические параметры почвы, кроме того, непостоянны по глубине, причем по мере приближения к уровню грунтовых вод электрическая проводимость почвы повышается. Однако на распространение радиоволн существенно влияет только сравнительно тонкий поверхностный слой почвы.

Электрические параметры в общем случае зависят как от свойств среды, так и от длины волны взаимодействующих со средой электромагнитных колебаний. Так, для длинных волн почвы по электрическим параметрам приближаются к идеальному проводнику. Поэтому длинные волны отражаются от земли без заметного поглощения. При уменьшении длины волны проводимость почвы уменьшается и почва по свойствам приближается к диэлектрику. Вследствие этого короткие волны, распространяющиеся вблизи поверхности земли, заметно поглощаются уже на расстоянии нескольких десятков километров. Поглощение волн сильнее над влажной почвой и в особенности над морем. Однако поглощение становится существенным лишь при распространении радиоволн вблизи поверхности земли, на расстоянии порядка длины волны. При прохождении на больших расстояниях от поверхности радиоволны практически не испытывают поглощения почвой.

Электромагнитные колебания светового диапазона с помощью оптических систем светодальномеров излучаются узким направленным пучком. Непосредственное влияние Земли в этом случае не имеет места, так как световой пучок проходит на значительном (по сравнению с длиной волны) расстоянии от поверхности; происходит лишь искривление пути световой волны за счет изменения показателя преломления атмосферы.

Читайте также:  У ребенка холодный лоб и испарина

Распространение радиоволн в зависимости от вида и ширины диаграммы направленности излучающей антенны захватывает значительное пространство. Однако при этом существенную роль играет лишь некоторая ограниченная область, внутри которой распространяются волны, наиболее эффективно действующие на приемное устройство.

Различия распространения электромагнитных волн

Изложенное свидетельствует о многообразии и сложности факторов. определяющих распространение радио- и световых волн в земных условиях. Ниже приведены характерные особенности распространения электромагнитных волн различных диапазонов.

Длинные волны при распространении вдоль поверхности Земли вследствие дифракции частично огибают земной шар и сравнительно слабо поглощаются. Поэтому поверхностная волна распространяется далеко за пределы прямой видимости (до 3000 км и более). Отражаясь от относительно устойчивых слоев ионосферы, длинные волны характеризуются постоянством условий распространения пространственной волны. Под действием флуктуаций в ионосфере напряженность поля пространственной волны меняется сравнительно слабо. Недостатком этого диапазона воли является высокий уровень атмосферных помех.

Распространение средних волн сопровождается резкими суточными колебаниями напряженности поля вместе приема. Днем преобладает поверхностная волна, которая частично огибает земной шар; однако вследствие значительного поглощения ее полупроводящей поверхностью Земли распространение поверхностной волны происходит не далее 1000 км. В ночное время усиливается пространственная волна, фаза колебаний в которой вследствие флуктуаций электронной концентрации в ионосфере непрерывно изменяется. Это вызывает изменение разности фаз накладывающихся поверхностной и пространственной волн, что приводит к колебаниям амплитуды результирующего поля, к ослаблениям и полному исчезновению приема, называемому замиранием.

Короткие волны распространяются на дальние расстояния главным образом пространственной волной, отраженной от ионосферы. Поле этой волны из-за изменений в ионосфере неустойчиво; возможно и замирание сигналов. Поверхностная волна вследствие значительного поглощения землей быстро затухает. Для этого диапазона характерно появление зоны молчания на некотором расстоянии от передатчика, в которой уверенный прием невозможен. Появление зоны молчания объясняется быстрым затуханием поверхностной волны и невозможностью, по условиям отражения, попадания в нее пространственной волны.

Ультракороткие волны распространяются почти прямолинейно, незначительно огибая выпуклость Земли за счет атмосферной рефракции и в меньшей степени (только метровые волны) за счет дифракции. Заметное отражение от ионосферы происходит только на метровых волнах (длиннее 4-5 м). Более короткие волны не могут попадать на землю пространственной волной и дальность их распространения определяется поверхностной волной, которая сравнительно быстро затухает за счет поглощения землей и атмосферой (в особенности для сантиметровых и миллиметровых волн). Атмосферные помехи в этом диапазоне незначительны.

Инфракрасные и световые волны распространяются почти прямолинейно. Их путь искривляется только за счет атмосферной рефракции. При распространении эти волны испытывают сильное поглощение и рассеяние в атмосфере, в особенности, если последняя насыщена жидкими и газообразными частицами воды и пылью. При помощи оптических систем световые и инфракрасные волны можно сконцентрировать в узкий луч большой мощности, в особенности когда источником излучения является лазер. Подстилающая поверхность не оказывает влияния на распространение этих волн. Наличие фона за счет рассеянного света атмосферы требует повышенной мощности источников света и соответствующей оптики, в противном случае применение световых волн в светлое время суток ограниченно. Наибольшая точность измерения направлений и расстояний при геодезических работах в настоящее время обеспечивается именно в диапазоне световых волн.

Электромагнитные волны – это результат многолетних споров и тысяч экспериментов. Доказательство наличия сил природного происхождения, способных перевернуть сложившееся общество. Это фактическое принятие простой истины – мы слишком мало знаем о мире, в котором живем.

Физика – королева среди наук о природе, способная дать ответы на вопросы происхождения не только жизни, но и самого мира. Она дает ученым способность изучать электрическое и магнитное поле, взаимодействие которых порождает ЭМВ (электромагнитные волны).

Что такое электромагнитная волна

Не так давно на экраны нашей страны вышел фильм «Война токов» (2018), где с ноткой художественного вымысла рассказывается о споре двух великих ученых Эдисона и Теслы. Один пытался доказать выгоду от постоянного тока, другой — от переменного. Эта продолжительная битва закончилась только в седьмом году двадцать первого века.

В самом начале «сражения» другой ученый, занимаясь проработкой теории относительности, описывал электричество и магнетизм как похожие явления.

В тридцатом году девятнадцатого века физик английского происхождения Фарадей открыл явление электромагнитной индукции и ввел термин единства поля электрического и магнитного. Также он утверждал, что движение в этом поле ограничено скоростью света.

Чуть позже теория английского ученого Максвелла поведала о том, что электричество вызывает магнитный эффект, а магнетизм — появление электрического поля. Поскольку оба этих поля движутся в пространстве и времени, то образуют возмущения – то есть электромагнитные волны.

Говоря проще электромагнитная волна – это пространственное возмущение электромагнитного поля.

Экспериментально существование ЭМВ доказал немецкий ученый Герц.

Электромагнитные волны, их свойства и характеристика

Электромагнитные волны характеризуются следующими факторами:

  • длиной (достаточно широким диапазоном);
  • частотой;
  • интенсивностью (или амплитудой колебания);
  • количеством энергии.

Основное свойство всех электромагнитных излучений – это величина длины волны (в вакууме), которая обычно указывается в нанометрах для видимого светового спектра.

Каждый нанометр представляет тысячную часть микрометра и измеряется расстоянием между двумя последовательными пиками (вершинами).

Читайте также:  Правильное очищение кожи лица этапы

Соответствующая частота излучения волны – это число синусоидальных колебаний и обратная пропорциональность длине волны.

Частота обычно измеряется в Герцах. Таким образом, более длинные волны соответствуют более низкой частоте излучения, а более короткие — высокой частоте излучения.

Основные свойства волн:

Скорость электромагнитной волны

Фактическая скорость распространения электромагнитной волны зависит от материала, которым обладает среда, ее оптической плотности и наличия такого фактора как давление.

Кроме того, различные материалы имеют разную плотность «упаковки» атомов, чем ближе они расположены, тем меньше расстояние и выше скорость. В результате скорость электромагнитной волны зависит от материала, через который она движется.

Подобные эксперименты ставятся в адронном коллайдере, где главным инструментом воздействия является заряженная частица. Изучение электромагнитных явлений происходит там на квантовом уровне, когда свет раскладывается на мельчайшие частицы – фотоны. Но квантовая физика – это отдельная тема.

Согласно теории относительности, наибольшая скорость распространения волны не может превышать световую. Конечность скоростного предела в своих трудах описал Максвелл, объясняя это наличием нового поля – эфир. Современная официальная наука подобную взаимосвязь пока не изучала.

Электромагнитное излучение и его виды

Электромагнитное излучение состоит из электромагнитных волн, которые наблюдаются в виде колебания электрического и магнитного полей, распространяющиеся на скорости света (300 км за секунду в вакууме).

Когда ЭМ-излучение взаимодействует с веществом, его поведение качественно меняется по мере изменения частоты. Отчего оно преобразуется в:

  1. Радиоизлучение. На радиочастотах и микроволновых частотах эм–излучение взаимодействует с веществом в основном в виде общего набора зарядов, которые распределены по большому количеству затронутых атомов.
  2. Инфракрасное излучение. В отличие от низкочастотного радиоизлучения и СВЧ-излучения, инфракрасный излучатель обычно взаимодействует с диполями, присутствующими в отдельных молекулах, которые по мере вибрации изменяются на концах химической связи на атомном уровне.
  3. Видимое световое излучение. По мере того как частота увеличивается в видимый ряд, фотоны имеют достаточную энергию для изменения скрепленной структуры некоторых отдельно взятых молекул.
  4. Ультрафиолетовое излучение. Частота увеличивается. В ультрафиолетовых фотонах теперь достаточно энергии (более трех вольт), чтобы воздействовать вдвойне на связи молекул, постоянно химически их перестраивая.
  5. Ионизирующее излучение. На самых высоких частотах и наименьших по длине волны. Поглощение этих лучей материей затрагивает весь гамма-спектр. Самый известный эффект – радиация.

Что является источником электромагнитных волн

Мир, согласно молодой теории о происхождении всего, возник благодаря импульсу. Он освободил колоссальную энергию, которую назвали большим взрывом. Так в истории мироздания появилась первая эм-волна.

В настоящее время к источникам формирования возмущений относятся:

  • эмв излучает искусственный вибратор;
  • результат колебания атомных групп или частей молекул;
  • если происходит воздействие на внешнюю оболочку вещества (на атомно-молекулярном уровне);
  • эффект схожий со световым;
  • при ядерном распаде;
  • последствие торможения электронов.

Шкала и применение электромагнитных излучений

Под шкалой излучения понимается большой диапазон частоты волны от 3·10 6 ÷10 -2 до 10 -9 ÷ 10 -14 .

Каждая часть электромагнитного спектра обладает обширной областью применения в нашей повседневной жизни:

  1. Волны маленькой длины (микроволны). Данные электроволны используются в качестве спутникового сигнала, поскольку способны миновать атмосферу земли. Также немного усиленный вариант используется для разогрева и готовки на кухне – это микроволновая печь. Принцип приготовления прост – под действием микроволнового излучения поглощаются и ускоряются молекулы воды, отчего блюдо нагревается.
  2. Длинные возмущения используется в радиотехнологиях (радиоволны). Их частота не позволяет пройти облака и атмосферу, благодаря чему нам доступно Фм-радио и телевидение.
  3. Инфракрасное возмущение непосредственно связано с теплом. Увидеть его практически невозможно. Попробуйте заметить без специального оборудования луч из пульта управления вашего телевизора, музыкального центра или магнитолы в машине. Приборы, способные считывать подобное волны, используются в армиях стран (прибор ночного виденья). Также в индуктивных плитах на кухнях.
  4. Ультрафиолет также имеет отношение к теплу. Самый мощный природный «генератор» такого излучения – это солнце. Именно из-за действия ультрафиолета на коже человека образуется загар. В медицине этот тип волн используется для дезинфекции инструментов, убивая микробы и бактерии.
  5. Гамма-лучи – это самый мощный тип излучения, в котором сконцентрировалось коротковолновое возмущение с большой частотой. Энергия, заключенная в эту часть электромагнитного спектра, дает лучам большую проникающую способность. Применима в ядерной физике – мирное, ядерное оружие – боевое применение.

Влияние электромагнитных волн на здоровье человека

Измерение влияния эмв на человека – это обязанность ученых. Но не нужно быть специалистом, чтобы оценить интенсивность ионизирующего излучения – оно провоцирует изменения на уровне ДНК человека, что влечет за собой такие серьезные заболевания как онкология.

Не зря пагубное воздействие катастрофы ЧАЭС считается одной самых опасных для природы. Несколько квадратных километров некогда красивой территории стали зоной полного отчуждения. До конца века взрыв на ЧАЭС представляет опасность, пока не закончится полураспад радионуклидов.

Некоторые типы эмв (радио, инфракрасные, ультрафиолет) не наносят человеку сильного вреда и представляют собой лишь дискомфорт. Ведь магнитное поле земли нами практически не ощущается, а вот эмв от мобильного телефона может вызвать головную боль (воздействие на нервную систему).

Для того чтобы обезопасить здоровье от электромагнетизма, следует просто использовать меры разумной предосторожности. Вместо сотен часов за компьютерной игрой выйти погулять.

Ссылка на основную публикацию
Adblock detector